
Carnegie Mellon

 

Recitation 8: Attention

Jingwei Zhang & Bharat Gaind



Carnegie Mellon

 

RNN Tasks

(HW3P2) Speech frame sequence -> Phoneme sequence
● Order-correspondence
● Each output corresponds to a small segment of input sequence
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RNN Tasks
● Text -> Translation of text
● Image -> A caption describing the image
● Document, Question -> Answer selected from the document
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Generative Architecture
● The output sequence can only be built after seeing the entire 

input sequence
● The output is itself a sequence, generated from the input 

sequence
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Decoder = Conditional Generator
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How to encode the input sequence
Recall the “many-to-many” Architecture (HW3P2)

Hidden states only encode information about the history of inputs
Ideally the last hidden state is an encoding of the entire input sequence
Let’s consider the last hidden state first
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How to inform the decoder of the input encoding
● Pass the last hidden state of the input sequence at

○ the first time step
○ every time step

● Pass a more flexible input encoding at every time step
○ determined by the current decoder state
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Network Prototype 1
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Problems?
Using one fixed vector to encode an entire sequence, hoping that 
the last hidden state could compress all the information
● Hard to train. Input encoding vector is overloaded with 

information, and earlier inputs tends to get forgotten
● Hard for the decoder to focus. Each time it’s seeing the same 

thing
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How to inform the decoder of the input encoding
● Pass the last hidden state of the input sequence at

○ the first time step
○ every time step

● Pass a more flexible input encoding at every time step
○ determined by the current decoder state
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Let the decoder decide the input encoding
Intuition:
At each time step, the decoder focuses on a specific segment of the 
input sequence to produce the current output

Formulation:
● Compute a time-varying input encoding that focuses on the part of 

input that matters to the current time step in the output
● Therefore, this input encoding should be a function of:

○ The decoder hidden state at current time step
○ The encoder hidden states at each input time step



Carnegie Mellon

 

General Attention Mechanism
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Variation: Dot Product Attention
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Variation: Bilinear Attention



Carnegie Mellon

 

Variation: Additive Attention
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Variation: Scaled Dot Product Attention
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Problems of RNN-based Attention
● Sequential nature of RNNs make them impossible to fully parallelize

○ Step-by-step computation relies on the output of the previous time-step
○ Cannot leverage parallelism of GPUs

● They struggle with long-term dependencies
○ What about LSTMs? Still cannot hold information across very long 

sequences
○ In NLP tasks, the same word may have very different meanings based 

on the context
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Transformer Nets
● Revolutionary sequence to sequence 

architecture from Google (2017)
● Forget about RNNs, capture 

dependencies across the sequences 
using attention

● This allows the encoder and decoder 
see the entire sequence at once

● Parallelism

Decoder

Encoder
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Multi-Head Attention
● Attention can be interpreted as a way of 

computing the relevance of a set of values, 
based on some keys and queries.

● Attention is applied multiple times to capture 
more complex input dependencies

● Each attention ‘head’ has unique weights
● Each attention ‘head’ can focus on different 

parts of the input sequence (and probably 
serve different purposes)
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Transformer Encoder
● Contains multiple ‘blocks’ (~6 blocks) 
● Residual connections between the multi-head 

attention blocks 
● Positional encodings explicitly encode the 

relative and absolute positions of the inputs as 
vectors 

● These encodings are then added to the input 
embeddings 

● Without them the output for “I like 11-785 more 
than 10-707” would be identical to the output 
for “I like 10-707 more than 11-785”
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Transformer Decoder
● Very similar to the encoder
● ‘Masked’ Multi-Head Attention block to hide 

future output values during training
● The query from the decoder is used with the 

keys/values from the encoder
● Final output probabilities are computed using

a projection layer followed by a softmax
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Putting together
● Input sequence is used to compute the

keys and values in the encoder
● Masked-attention blocks in the decoder

transform the output sequence until the
current time-step into the queries

● Multi-head attention in the decoder
combines the keys, queries and values

● The result is projected into output
probabilities for the current time step
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More resources

1. The original paper: Attention Is All You Need
2. Detailed explanation

https://arxiv.org/pdf/1706.03762.pdf
http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/

