
Carnegie Mellon

Recitation 8: Attention

Jingwei Zhang & Bharat Gaind

Carnegie Mellon

RNN Tasks

(HW3P2) Speech frame sequence -> Phoneme sequence
● Order-correspondence
● Each output corresponds to a small segment of input sequence

Carnegie Mellon

RNN Tasks
● Text -> Translation of text
● Image -> A caption describing the image
● Document, Question -> Answer selected from the document

Carnegie Mellon

Generative Architecture
● The output sequence can only be built after seeing the entire

input sequence
● The output is itself a sequence, generated from the input

sequence

 Encoder Decoder
STATE

 Output

 Input

Carnegie Mellon

Decoder = Conditional Generator

Carnegie Mellon

How to encode the input sequence
Recall the “many-to-many” Architecture (HW3P2)

Hidden states only encode information about the history of inputs
Ideally the last hidden state is an encoding of the entire input sequence
Let’s consider the last hidden state first

Carnegie Mellon

How to inform the decoder of the input encoding
● Pass the last hidden state of the input sequence at

○ the first time step
○ every time step

● Pass a more flexible input encoding at every time step
○ determined by the current decoder state

Carnegie Mellon

Network Prototype 1

Carnegie Mellon

Problems?
Using one fixed vector to encode an entire sequence, hoping that
the last hidden state could compress all the information
● Hard to train. Input encoding vector is overloaded with

information, and earlier inputs tends to get forgotten
● Hard for the decoder to focus. Each time it’s seeing the same

thing

Carnegie Mellon

How to inform the decoder of the input encoding
● Pass the last hidden state of the input sequence at

○ the first time step
○ every time step

● Pass a more flexible input encoding at every time step
○ determined by the current decoder state

Carnegie Mellon

Let the decoder decide the input encoding
Intuition:
At each time step, the decoder focuses on a specific segment of the
input sequence to produce the current output

Formulation:
● Compute a time-varying input encoding that focuses on the part of

input that matters to the current time step in the output
● Therefore, this input encoding should be a function of:

○ The decoder hidden state at current time step
○ The encoder hidden states at each input time step

Carnegie Mellon

General Attention Mechanism

Carnegie Mellon

Variation: Dot Product Attention

Carnegie Mellon

Variation: Bilinear Attention

Carnegie Mellon

Variation: Additive Attention

Carnegie Mellon

Variation: Scaled Dot Product Attention

Carnegie Mellon

Problems of RNN-based Attention
● Sequential nature of RNNs make them impossible to fully parallelize

○ Step-by-step computation relies on the output of the previous time-step
○ Cannot leverage parallelism of GPUs

● They struggle with long-term dependencies
○ What about LSTMs? Still cannot hold information across very long

sequences
○ In NLP tasks, the same word may have very different meanings based

on the context

Carnegie Mellon

Transformer Nets
● Revolutionary sequence to sequence

architecture from Google (2017)
● Forget about RNNs, capture

dependencies across the sequences
using attention

● This allows the encoder and decoder
see the entire sequence at once

● Parallelism

Decoder

Encoder

Carnegie Mellon

Multi-Head Attention
● Attention can be interpreted as a way of

computing the relevance of a set of values,
based on some keys and queries.

● Attention is applied multiple times to capture
more complex input dependencies

● Each attention ‘head’ has unique weights
● Each attention ‘head’ can focus on different

parts of the input sequence (and probably
serve different purposes)

Carnegie Mellon

Transformer Encoder
● Contains multiple ‘blocks’ (~6 blocks)
● Residual connections between the multi-head

attention blocks
● Positional encodings explicitly encode the

relative and absolute positions of the inputs as
vectors

● These encodings are then added to the input
embeddings

● Without them the output for “I like 11-785 more
than 10-707” would be identical to the output
for “I like 10-707 more than 11-785”

Carnegie Mellon

Transformer Decoder
● Very similar to the encoder
● ‘Masked’ Multi-Head Attention block to hide

future output values during training
● The query from the decoder is used with the

keys/values from the encoder
● Final output probabilities are computed using

a projection layer followed by a softmax

Carnegie Mellon

Putting together
● Input sequence is used to compute the

keys and values in the encoder
● Masked-attention blocks in the decoder

transform the output sequence until the
current time-step into the queries

● Multi-head attention in the decoder
combines the keys, queries and values

● The result is projected into output
probabilities for the current time step

Carnegie Mellon

More resources

1. The original paper: Attention Is All You Need
2. Detailed explanation

https://arxiv.org/pdf/1706.03762.pdf
http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/

