Recitation 8: Attention

Jingwei Zhang & Bharat Gaind

Carnegie Mellon

RNN Tasks

(HW3P2) Speech frame sequence -> Phoneme sequence
® Order-correspondence
® Each output corresponds to a small segment of input sequence

Carnegie Mellon

RNN Tasks

e Text -> Translation of text
e Image -> A caption describing the image
e Document, Question -> Answer selected from the document

Carnegie Mellon

Generative Architecture

e The output sequence can only be built after seeing the entire
Input sequence
e The output is itself a sequence, generated from the input

sequence
Output

STATE
Encoder - Decoder

Inlut

Carnegie Mellon

Decoder = Conditional Generator

In Math:
P(yel X1) oo X7, Y1) o) V1)

Each item in the output sequence must be conditioned on:
 The entire input sequence
* All the past output items

In Deep Learning:

The decoder must have access to:
« Some kind of encoding of the entire input sequence
 The past states of the decoder

How to encode the input sequence

Recall the “many-to-many” Architecture (HW3P2)

Hidden states only encode information about the history of inputs
|deally the last hidden state is an encoding of the entire input sequence
Let’s consider the last hidden state first

S8,

6 6 & b

-

=
>

Carnegie Mellon

How to inform the decoder of the input encoding

e Pass the last hidden state of the input sequence at
o the first time step
o every time step

Carnegie Mellon

Network Prototype 1

Produce an encoding of the entire input.

A A A |

& & b
Repeatedly pass the encoding to the output network.

113

e N
AA AA AA AA

X0 X1 Q(ﬁ Xn

—

.
t

\

Y
Y

Carnegie Mellon

Problems?

Using one fixed vector to encode an entire sequence, hoping that

the last hidden state could compress all the information

e Hard to train. Input encoding vector is overloaded with
information, and earlier inputs tends to get forgotten

e Hard for the decoder to focus. Each time it's seeing the same
thing

Carnegie Mellon

How to inform the decoder of the input encoding

e Pass a more flexible input encoding at every time step
o determined by the current decoder state

Carnegie Mellon

Let the decoder decide the input encoding

Intuition:

At each time step, the decoder focuses on a specific segment of the
iInput sequence to produce the current output

Formulation:

e Compute a time-varying input encoding that focuses on the part of
input that matters to the current time step in the output

e Therefore, this input encoding should be a function of:
o The decoder hidden state at current time step
o The encoder hidden states at each input time step

Carnegie Mellon

General Attention Mechanism

« Construct a query q; from the decoder state h #¢
* Represents the decoder’s interest
« Construct a key k; from the encoder state h;"*

« Calculate an attention score att(q;, k;)

« Tells how much at output time step i the decoder should focus on the j-th
input item
« Construct a value v; from the encoder state h;"*

Then construct the encoding by computing a weighted sum of values using
attention scores as weights:

. 37_,att(;, k) v,

Carnegie Mellon

Variation: Dot Product Attention

+ Query q; = h%¢
* Keyk; =h;"
» Valuev; =h;"*

+ Attention score att(q;, k;) = softmax(q; - k;) (over all j)

« Simplest similarity calculation (but works well in practice)
* Does not introduce new parameters

Carnegie Mellon

Variation: Bilinear Attention

+ Query q; = h%
* Keyk; =h;™
« Valuev; =h;"*

* Attention score att(q; .k;) = softmax(q{ WKk;) (overallj)

* Queries and keys do not have to be in the same space
* Introduces new parameters

Variation: Additive Attention

* Query q; = h{*
+ Keyk; =h¢m™
» Valuev; =h/"¢

 Attention score att(q; k;) = softmax(W1 tanh(W,q; + W k;)) (over all j)

Variation: Scaled Dot Product Attention

Query q; = MLPq(h?ec)

Key k} - MLPk(hfnc)

Value v; = MLP,(h§™)

Attention score att(q; ,k;) = softmax (q‘ \/ﬁk") (over all j)

« Use the dot product to calculate similarity for projected key value

representation
« Scaled by the sqrt of hidden size in order not to saturate the gradient of

softmax

Carnegie Mellon

Problems of RNN-based Attention

e Sequential nature of RNNs make them impossible to fully parallelize
o Step-by-step computation relies on the output of the previous time-step
o Cannot leverage parallelism of GPUs

e They struggle with long-term dependencies
o What about LSTMs? Still cannot hold information across very long
sequences
o In NLP tasks, the same word may have very different meanings based
on the context

Carnegie Mellon

Transformer Nets

e Revolutionary sequence to sequence
architecture from Google (2017)

e Forget about RNNs, capture
dependencies across the sequences pecoder
using attention

e This allows the encoder and decoder
see the entire sequence at once

e Parallelism 2

Carnegie Mellon

Multi-Head Attention

e Attention can be interpreted as a way of

Scaled Dot-Product Attention

computing the relevance of a set of values, |13m
based on some keys and queries.

e Attention is applied multiple times to capture
more complex input dependencies

Mask (opt.)

Multi-Head Attention

e Each attention ‘head’ has unique weights
e Each attention ‘head’ can focus on different :
parts of the input sequence (and probably c

serve different purposes)

L L £
| Linear l]' Linear 'J Linear

"‘\ -(;"

Carnegie Mellon

Transformer Encoder

(f_’[Add &lN]N

e Contains multiple ‘blocks’ (~6 blocks) === dorm

e Residual connections between the multi-head Forward
attention blocks —

e Positional encodings explicitly encode the Nx | —(AddaNom)
relative and absolute positions of the inputs as i Feed
vectors e

N)

e These encodings are then added to the input e J
embeddings Positio.nal D

e Without them the output for “I like 11-785 more Encoding

” H . Input
than 10-707” would be identical to the output Embedding
for “I like 10-707 more than 11-785" i

Inputs

Transformer Decoder

e \ery similar to the encoder

e '‘Masked’ Multi-Head Attention block to hide
future output values during training

e The query from the decoder is used with the
keys/values from the encoder

e Final output probabilities are computed using
a projection layer followed by a softmax

Carnegie Mellon

Output
Probabilities

s

!

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

177 N

Add & Norm _Je=

Masked
Multi-Head
Attention

it 2
. —

J

@ Positional
Encoding
Output
Embedding
Outputs

(shifted right)

Putting together

Input sequence is used to compute the
keys and values in the encoder
Masked-attention blocks in the decoder
transform the output sequence until the
current time-step into the queries
Multi-nead attention in the decoder
combines the keys, queries and values
The result is projected into output
probabilities for the current time step

4 \
Add & Norm

Carnegie Mellon

Output
Probabilities

Softmax

Linear

m

Add & Norm

Feed

Forward

Add & Norm

I

Multi-Head

Feed Attention
Forward 7 7 Nx
~—
N Add & Norm Je=
r—»' Add & Norm l Masked
Multi-Head Multi-Head
Attention Attention
At 2
- J _ e,
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Carnegie Mellon

More resources

1. The original paper: Attention Is All You Need
2. Detailed explanation

https://arxiv.org/pdf/1706.03762.pdf
http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/

